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ABSTRACT: “The capacity of low rate multicell silver chloride/
megnesiun ses water batteries 1s often limited by a {locculent
precipitate that clecgs the inlet ports and f11las the space between 5
the electrodes. The resul$s of this investigatlion show that the ;
flosculent precipitate is formed only when magnesium ions {Mg**) |
are initislly present in the slecirclyte solution. In magnesium
free mslt solutions, with a salinlty egual to sea water; the ;
precipitste is granulsr, The magnesium-ion effect can be controlled ;=~
by raseing the incoming ses water electrolyte through a filter of
thalious fluoride {TIF) or Jdisodium ethylenediaminetetrascetate
(disodium EDTA). The magnesium ions in the sea water electrolyte
apparently react with the T1F to form a granular precipitate, and
with discdium EDTA to form & soluble mesgnesium complex., Batteries
containing filters of these types were discharged in 3.5% salinlty
sea water and showed capacity increases ranging from 12 to 60
percent over batteries having no filter, With TIP filters the
capacity increase was typically 12 percent and with disodium EDTA
the increasse was typically 45 percent.
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THE CONTROL OF INSOLUBLE MAGNESIUM COMPOUNDS RESULTING
FROM SEA WATER BATTERY OPERATION

This report describes the development of a chemical fllter which
improves the capacity of silver chloride/magnesium sea water
batteries by controlling the formation of precipitates that clog
this type of battery during discharge. A patent application has
been made for the invention.

The work conducted during this investigatiorn was performed under
Tagk No. MAT O3L 000/F008 98 Ol Problem 019.

E. F. SCHREITER
Captain, USN
Commander
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INTRODUCTION

During the development of & low rate multicell silver chloride/
magnesium sea water battery for a soncbuoy application, it was
observed that & flocculent corrosion preduct would form during
discharge in sea water., Thils product would gradually clog the 0,070

. inch diameter entry ports in those cells nearest the negative
terminal of the battery, and f£ill the 0,020 inch wide space between
the slectrodes in these cells, This condition, often encountered
in commercial sea water hatterles, limlted the capaclty of these
bstteries to less than half that theogetlcally available., When this
battery was discharged in & sodium chloride solution, a granular
correosion product was formed., The normal flow of solution through
the battery during discharge, flushed this granular precipitate from
the ¢2lls. Ccusequentliy, the capacity of batteries discharged in
sodium chloride solution was greater than those discharged in sea
water,

The objective of this investigatlon was to eliminate the clogging
of these multicel] 8ea water batteries and thereby lmprove thelr
capacity. The investigation was divided into two parts: (1) the
determination of the cause of the flocculent corrosion precipitate,
and (2) ite control. This report describes the experiments that
were conducted and discusses the effects of various solution
parameters,

EXPERIMENTAL APPARATUS AND PROCEDURE

The experimental battery model used in *"e first part of this
inveatigation is shown in Figures 1 and 2, It consisted of a
cylindrical lucite block con each end of which was cemented a cell
containing an AZ-6]1 magnesium alloy electrode. AZ-01 magnesium is
the slloy commonly used for anodes in silver chloride/magnesium
ges water batteries, The configurstion of the experimental model
was similar to that of Battery WOX-74, a 10 cell silver chloride/
magnesium sea water battery that was developed at the Navsl Ordnance
Laboratory, White Oek as a power source for scnobucys. Upon
immersing this model in an aqueous 8alt solution with a d¢ voltsge
of 15.2 volts impressed across the electrodes, a condition simulating
the parasitic drasin (see Discussion) during a 150 ma discharge of
Battery WOX-T4 was schisved. When the dc source was applied,
magnesium plated away from the positive electrode and formed & white
insoluble precipitate at the negative end, Electrelytlce corrosien
experiments, of this type, were conducted in Gulfl Stresm z¢g water
and in other aqueous salt solutions of equal s&linity (3,5%). The
salt solutlions contained varying proportions of sodium chleride (NaCl),
magnezium chloride (MgCly), sodium pulfaete (Ns30.), and maghesium
sulfate {MgS0,). The iona contained in aqueous solutions of these
galis rggreaented the four major inns found in ses water which are
Net, Mg™', C17, and 80.""., The specific composition of each
eloctrolyte used ie given in Table 1.
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Experimental runs were usvally of three hour duratlon, but sonme
exploratory experiments were allowed to run for seven hours, Before
the start of each experiment, the gH of the electrolyte wss measured
and adjusted if necessary to pH = 3,254,05, a value equivalent to
that of Gulf Stream sea water. Electrolyte pH was also determined
upon completion of each experiment. The experiments were conducted
at room temperature (2241°C), and the volume of =lectrolyte used for
each run was usually 1800 m), The electrical conductivity of the
prepsred electrolyte solutions was approximstely equal to that of
sea water as the salinity of all solutions wsg nearly ideatical,

The specific resistivity of 3.5% sallnlty ses water is 8 ohme-inchet
at 20°C,'»%2,® The precipitate obtained from each experiment was
collected and analyzed by x=-ray diffracticn spectra, A vsriable
resistor was used to maintain a constant voltage of 15 volts between
the positive and negative elecirodes, and a milliammeter was used to
measure the parasitic drain. A schemaiic diagram of the circuitry
used in these experiments is shown in Flgure 3,

DISCUSSION OF THEORY AND RESULTS

The dissolution of magnesium anodee in silver chloride/magnesium
sea water batteries ias directly proportional to both the erergy
producing reaction and to the anodi¢ corrosion of magnesium, The
anodic corrosion rate in muiticell sea water batteries, is basically
controlled by the parasitic drain.* When a number of seriss connected
cells are immersed in a single continuous electrolyte, 88 18 (he caue
with sea water batteries during operation, each ce¢ll is shorted to
every other cell by means of the connecting conductive sea water,

As a result, current flows between points of different potent’al,
flowing outward into the common electrolyte from all the cells in the
positive half of the battery and back into the cells of the nepative
half. This current is referred to as the parasitic drain, To
complete the circuilt, the parasitic drain passes internally thre: .o
the battery from the negative end to the positive end in sddition o
tne current passln, in the same direction to supply the externsl
circult, A schematic circuit disgram of parasitic current pathways
in a multicell sea water battery is shown in Figure 4,

The maynitude of the parasitic drain is dependent ¢u the
operating cell voltage, the number of cells, the srea and number of
inlet and ocutlet ports t¢ esch cell, the length of the ports from the
inside of the cell to the common body of electrolyte, and ithe
temperature and sslinity of the electrolyte. Reference (4) presents
an equation which may be used to célculate the psrasitice drain,

—

Ligx * ExY/2b {1)

where paresitic drain in amperes

operating cell voltage

- humber of cells per battery

CL/KA = resistance of the electrolyte path in ohms
specific repistivity of sea water in ohm-inshes

n
[ R vl el i)
L 8 7 E #
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L = length of path of sea water from inside the cell
to the larger body of the electrolyte in inches

K = number of port holes per cell

A = area of port holes in square inches

This equation shows that reducing the number of cells (2N) per
batvery, and decreasing the diameter of the entry and exit ports are
two ways of reducing the parasitic drain., Figure 5 contains s
family of curves showlhg the parasitic drains, calculated from
equation (1), for sea water batteries with five to eleven cells when
gas bubbles block«off from 10-70% of the outlet port area at any
given time, Por the calculations 1in Figure 5, the diameter of the
outlet and inlet ports was teken as 0,070 inch,

The simulated parasitic drsin was measured during each experi-
mental run, and the data listed in Table 2 shows that its maximum
value varied cnly slightly with the chemical composition of the
electrolyte solution used, This result was not unexpected &s the
total salt content of each electrolyte solution was constant although
the composition varied. The parasitic drain generated with the
experimental battery model was usually in the range of 47 to 65 as
is shown in Table &, These values are in good agreement with the
calculated value of 60 ma (see Appendix A) obtailned from eguation (1)
for 8 10 cell seza waler battery with an operating cell voltage of
1,50 volts, with cathodic inlet and outlet port diameters of 0,070
inch, and anodic inlet and outlet port dismeters «f 0,035 inch and
0,070 inch respectively. These conditions are similsr to those used
with the sxperimental model, It is impertant to note that the value
of 60 ms obtained from equation (1) is the maximuwm parasitic drain
ong would expect from a sea water battery with the listed parameters.

t sny glven time, howsver, the parasitic drain is reduced by the
pregence of gas bubblea in the exit and entry poris of the battery
a8 is shown in Figure 5, This i3 why a range of vzlues was abiained
for the parasitic drsinp witn the experimental basttery model,

Anothay effect of the parssitic drain is thsl the magnesium at
the posilive end of the battery soets 28 ap gnode, goes into soiution
and is plated out et the negstive side as maygnesium hydroxide, an
insoluble preclipitste. Accordins to Peraday's law which states that
one gram aquivalent welght of malier ig chemically sltered at ea&nh
electrode for every 96,500 coulombs of eleeiricity vsssed through the
elestrelyte, the smount of magnesium deplated is directly proportionsl
to the magnitude of the parasltic drsin., The electrolytic corrosioen
ol the magnesiun snode may be described by the follewing equation:

g -~ Mgt o+ 2e7 £2)

hen the voltage o/ the parasitic drain ig .ovs the descaposition
potantisl of the gSea water electrolyte, a conceniration of hydroxyl
ions {QH™) otcurs about the negative portion of the hsstery. Since
the divelent magnesium lons (#g™7) resulting frowm the glectrolysie
corrosion of the ancdic magnesium aigrsts to the negdtive side of the

3
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battery, they react with CH™ lons to iform an insoluble hydroxide
precipitate, The reacticn mechanism postulated for the formation of
the hydroxy compound is described by the following equations:

Mgtt + OH™ = Mg(OH)* (3)
Mg (OH)Y + OH™ = Mg (OH), (4}

The stablility of the intermediate product 1s determined by itks
stability constant (K) which is equal to the ratio of the Mg(OH)" ion
in equilibrium with the Mg*' and the OH™ ion, The greater the value
of 8: the greater the stability of Mg(OH)". The abovc reactions are
thoygiit ressivle since the value of K for reaction {3) is quite high
(appwoximately 380)%, Although other spescies may actually be present,
X-ray analyses have shown that magnesium hydroxide [Mg(OH{;J is
formed as the primary corrasion product,

It was observed that when a low rate multicell silver chloride/
megnesium sea water battery was discharged in sea water, & flooculent
hydroxide precipitste wag formed and clogged the inlet ports of the
more negative cells of the batvery, The {locculent precipitate slsc
filled the spaces between the electrodes of these ¢ells, Hence, the
cells became electrolyte starvec and battery capacity was significantly
reduced, When the same type of battery was discharged in a szodium
¢cnleride solution of egqual salinity, & granular precipitate was
formed, The granular precipitate did not affect battery capaclity as
it was easily flushed from the cells during battery discharge.

To determine the cause. for the formation of the {locculent hy-
droxide precipitate in sea water, electrolytic corrosion experiments
were conducted in verious aqueours salt solutions as shown i Table 1,
The results of these experiments show that the physicsl chsracteristics
of the nydroxy preclipitate varied significantly with wae themical
somposition of the electrolyte used, For example, it wes ohaseyved
that large Tlocculent agplomerates ipits
formed only when the divealent ¥.*¥ cations were Initlally present in
the electrolvie solution {i,2., solutlons B,D,F,5 snd H of Table 1},
This precipitate, in g short time, would clog the let vt of the

t he [low of

]
nesstive cell of the giperimentsl model ang resirlet ihe &
electrolyte.® However, in elactrolyte soluilons initizlly centaining
ne Mgt tons {i.e¢., solutions &,T apd & of Tavle 1} & granular
precipitate was formed, This precipitate 44d not clog the pegative
cell snd was easlly flushed oul inte the surreunding boedy of
eiectrolyte.® '

The precipitates obisined from nach experimanial ruya weve
analzied by z-ray <irfpsction spetirs. The gpectr.s of thé precipis
tates collected from solulions AR, EF snd G {see_Tztle 1} nad only
poe readily ldentilistle copponer', HgiCHla., In addition, thers were
Lo uhidentificd constituenta found 1o those sasglesa. It is likely
tHhat ope 0f thene meterials wad free magnesium, for spalilnyg ocourved

: rode and metal was visible in (he carresipn producta.

3% the sgenasien ar
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The other wae elther a high molesujer welght compound or & meterial
consisting of very small arystals.’ The chemlcal compasition of this
materizl 2z not known, The precipitate from solutlion € was Lidentified
a8 being M: metsl. However, it is poesible that tne concentration

of this meterial was high encugh to mask out the Fg{OH)s snd other
constituents pregsert, The spectrum of the precip* ;ate obtained from
solution K {sea water) had only one resgdily identi1{iable somponent,
caleium caprbonate (CaC0s). Therse were also some other wmsterlals
pregent, but these were not identified as they were nasksd by the
Cel0s.

Since information available from the x-pay dif” cotion srglysis
was quite limited, no spezific conclusisas could e ads goncerning
the chemiasl composition of the corrosion products .. the mochanisx
of the magneaium lon effect. There iz some gzperin,:zai evidencs,
hawever; that the physical characteristics of the .. .scluble hydroxy
precipitate are also Jependent on eiectraiyte PE. Pey examvle, the
finael pH of alectrolyte solutions {A,C and E of ¥zbis 1) concentrated
with the granulay hvuroxy precipltate wzg 3. oo

imately 11.0;
indicating a high OV~ goncentraticn., Theref: ¢, a nagnssium complex
such g Mz(OH)5 aﬁéfér Hp{OH)Z nay have been Formed tying up thc o=
ions, However, the final pH of albatz;'gia';aautiens songentrated
with the floceulent hydroxy rrecipitate {zciutions B,D,P,0 and H)
wes 9.4 ¢ 0,5, Ir these sciublons, Mg*® ions wer: iv*ti&iiy Jresﬁn
Hanee, other magmeaium sompounda cculé have nrecig%tarea taking out
af solution some of the OH™ jons. This would sceount for the lckar
Tingl pH of these salt scolutions. Thege differencas in final pH
e%sﬁfreé with solution volume held constent,

Sinoye the floaculent hydroxy precipitsle ﬁﬁ“ formed only <F,“
Mgt* ione wers initialiy present in the alactralyte 8G¢L§étn} H€ays of
controllling thip fon were slso fnvestigstsd, One approwch thyt wag
studied wap th@ aﬁe of & chemlcal Filter which would pemovs the
aé** tong from the incoming elsgtrolvte, gither Dy preginitsiion in
s nonefloseulent foia or ¥ *he formation of a soludle magne:
G&&?Z%Xe Thia phase of the 3 inveatization wae inisigisd by 2% 3&?&3»

the Teasibpilivy of using ¢! a;ia 5 flycrids {T1F) to reast wit
kg** fons in ses water ito form a granulsar precipitate. Thall
Fluoride is ﬂhi%ég?&ﬁé@“? sordound that exhibpits spprealebl
-mgneous polubiiity,” It was peytylated that 4w sclution the
Izne would reast @itk the flueride ions to POy & “vgaaigr L5
of myuuesins Yluovide {Hgfsi. The thalliwn iens {T1° in sole
would then pogoet with OH™ io9is 3o Tors thalious hgdvgx&éa {T
# strong solubls base, These régsliions ere desoribved by the
folleving egustiona:
TIF ® 7Y e FT {5}
3T . EFT o Mg 3

o4
Pl
*

4
£
-
?

e
i
&
ey

or?

pEA]
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The thallium ions might also react with other anions in sea water to .
form additlional insolublz salts (i.e., ‘T1Cl). '

To test this hypothesla, electrolytic corrosion experiments
wére conducted in sea water and in a manner =imilar to those
degcribed previously. In these expsriments, the TIF powder was
compressed into a ¢ylindrical pilll 1.03 cm long and 0.95 em in
diameter, The pill was wrapped with clear cellophane to prevent the
outer surface frowm dissolving. Through the center ot the pill, a
0,18 cm diameter hole was drilled. The pill was then glued over the
inlet port of the negative cell of the experimentsl battery model
80 that the sea water electrolyte had to pass through the TIF pill
before entering the cell, During these experiments only smeall: amounts
of the floceulent hydroxy precipltate were formed even though sone
experiments were sllowed to runr for ag long as seven hours, 7The
resulting precipitates were collectad and agnalyzed by X-ray diffrac-:
tion spectra. However; no conclusive evidence for the proposed
mechanism was obtained 2. the X-ray diffraction analysis of the pre-
ciplitates was not definitisc, '

Other experiments were conducted 1n which a TIF filter wes used
during the discharge of amectual silver chloride/magnesium sea water
batteries (1.e., Battery WOX-T4 in sea water) The filters used in
these experiments were large enough to encompasg the inlet portg of
the five cells nearest the negative terminal of the batteéry. Thus,
the seg water electrolyte had to pass through the filter to enter
these cells. The TIF fillter was fsbricated by compressing the powder
into the configuration ghown in Figure 6, and gluing the formed block
into a four-sided luclte case., Henge, the sea water slectrolyte
came in direct contact with the T1F bhefore entering the five moat
negative cells., Theae experiments demonstrsted that TIF wes ¢sgpable
of controlling the physical characteristics of the insoluble
corrosion precipitste formed during battery operation, therebdy ime
proving the capaclty and operational characteristics of ses water
batteries. When compared to control discharges In which the TIF
was not used, an average increase of 12% in battery capscity wes
obtained. Figure 7 shows that the voltage=-time characteristics were
also improved, for the plateau voltage was extended by & time interval
proporticnal to the percentage incregse in capacity.

Whereas T1F can react with the Mg*+ ions in sea water to form a
granular precipitate (MgFo ), 1t was postulated that disodium ethylene-
diadnetetrascetate (digodium EDTA) could react with Mg** ions to
form a soluble magnesium complex,  Disodium EDTA is a white
crystelline compound, occurring with two molecules of water of
hydration. It is represented by the abbreviated formula, NagHaY°2HaO,
This salt 1s moderately scluble in water. A 0,1 M solutlon nss a pH
of spproximately 5 and behaves as a weak acid, In aqueous solution,
the HaY™ ion is the complex forming subt ance and reacts with
cgtions according to the followlng equation:

Me*? + Hpv* @ Mey(P-E) 4 oyt (8)
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_where n rangee from 2 *o 4,° One gram-ion of the complex forming ion

in all cagses reacts with one grare-lon of the metal without regard to

4%s valence, In each ¢ss?2, wwo grau-iong of the hydrogen fon are

also formed., The regulting comblexes have the same composition,
but differ from onz another in the gharge they carry. These gomplexes

- -hgve been aazsigned the following sitructures by Schwarzenbaoh:

_-CHs = COOT- ' _-CHg « COO~ ~CHa = 00—
N {-CHs = COO— . NZ—CHs - CCQ <-CHs = COQ_ |
| . —’II I T~ o\ IIT ’ - \;:V
(lCHS LI Me (Cf;{B )a _ ,{f‘}ﬂe (Cflfﬂ Yo I
N=-CHg - (.‘.C.‘?O--1 N="CHe = COOJ N'-’\:CI’{} - COCf'_Ji

~Ckig - C00~ ~CHp ~ COO "CHa = COO

The complexes of the divalent metal ions occur as complex anions, -
such as MeY®., The stebility of the complex is characterized by its
stability or formation constant §%. This constant defines the ratio
of the complex metal ion [Mevin- in equilibrium with the metal ion

(Me*h) in solutioni, Consequently, the greater the value of K, the

greater the. stabllity of the metal complex. In sea water there are

. two metal ions, calcium (Ca*®) and magnesium (Mg**), that will compete

to form the MeY™ complex, However, in sea water the lonic strangth

of calelum (Ca**) is considerably less (about one-third) thsn the

fonic strength of magrnesium (Mg*+). Therefors, it was postulated

that the magnesium complex of MgY®™ would form in se&a water and thereby -
control the magnesium ion effect. '

To study this hypothesls, electrolytic corrosion experliments
£202 conducted in sea water in a manner simllar to that previously
described {see Experimental Section). In these experiments, a small
gudntity of disodium EDTA was wrapped in thin non-woven dynel paper
and suspended near the inlet port of the negative cell of an experi-
mental battery model undergoing electrolysis. Thils approach was
used becguse disodium EDTA could not be compressed inteo a usable
configuration, These corrosion experiments demonstrated that
disodium EDTA would be useful in impeding the formavion of the
floseulent type precipitate. However, no conclusive evidence was
obtained for the proposed mechahism, -

Other experiments were conducted in which disodium EDTA filters
were used during the discharge of asctusl allver chloride /magnesium
sea water dbatteries, The disodium EDTA filters used in these
experiments were similer in design to the TIF filter shown in Figure 6.
However, since disodium EDTA could not be compressed, the loose
orystalline salt was placed within a lucite case and a dynel-webril
paper of 0,001 inch thickness was used to enclose the loose salt
within the case. Thus, the disodium EDTA wes physically contalned,
but the ions were free to migrate through the thin paper and react
with the Mg*™ ions in the sea water electrolyte prior to its entering
the five most negetive cells, The data obtained from these experi-
mente indlcate that the capacity of these batteries was signiflcantly
increased, end that only a very little of the flocculent type precipl~
tate was foomed during battery discharge. When compared to data of
controi discharges in which neither the T1F or disodium EDTA was used,

7
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an average improvement of U5% in battery capscity wes obtained.

Figure 8 shows that the time interval of the plateau voltage (useful
working veoltage) was also inoreased significently. These improvements
are attributed to the Hs¥™ ion which spparently reacted with the Mg+ .
ione in sea water to form the scluble complex Mz¥™=, and theredy

helped to impede the formetion of the flocculent corrosion preeipitate,

Flgure O shows the comparative effect of TIF and dimodium EDTA

on the capacity and operational charscteriitics of sez woher Bat*evy :
WOX=T4 when discharsed at a constant current of 150 ma., Significant
improvements in the capacity and operntional characteriatics of
multicell silver chloride/magnesium sea water sonobuoy batteries .
are achieved by using & chemlagl filter of the type previously des-
cribed, espsciglly when disodium EDTA is used az the chemical reagent.
Although ths control of Mg(CH)a formetlon in ses water butteries for
torpedoes was not studied as a part of this investigation; a suitable

. dispdium EDTA filter might be beneficial when the ses water is

© yveciroculated to improve battery operation under conditions of low
salinity and low femperature. S
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CONCLUSIONS AND RECOMMENDATIONS

The 1nefficlency of low rate multicell silver chloride/magnesium
sea water batteries is due to the flocculent corrosion precipitate
that forms during battery operation., The flocculent precipitate forms
only when magnesium ions (Mg**) are initiaslly present in the ses
water electrolyte, This magnesium ion effect is controlled by passing
the incoming sea water through a chemical filter duriny battery
operation, At the present time, disodium ethylenedizminetetreacetate
(disodium EDTA} is the most effective filter reaxent, Batteries
containing a filter of this type showed & 45% increase in capacity
over those wilthout filters,

It is recommended that this study be continued to determine the
actual reactlion mechaniasms involved. It is also suggested that a
chemical filter, such as described in this report, might be used to
improve other types of sea water batteries, :
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APPENDIX A

Sample Calculatlon of Parasitic Current.
Imax ™ ENB/éb = the maximum parssitic drain in amperes

operating cell voltage = 1.50 volss

number of cells per basterv = 10

(10/2)? = 25

CL/KA = resistance in ohms

specific reslstivity of ses water = 8 ohm

inches at 2,.5% salinity and 20°C

length of electrolyte path from inside the

cell to the larger body of electrolyte =

0.1875 ineh

K = number of port holes per cell = 2

A= cross sectional port area in sguare inches =
A4

D a diameter of port holes

20N
t Qo e
nereg’

From the gbove, we get the following:

EN® = (1.5) (25) = 37.5
b = CL/KA = (8) (0.1875)/KA = 1.500/KA
KA = mr} + nrd
= m [(0.035)® + (0,0175)*1
- 0,481 x 10°° square inch
b = 1,500/0.481 x 10~ « 312 ohms
Ipax * 37.5/2(312) = 60 ma
NOTE: This is the maximum leakage current one would expect
for a sea water battery with the avove parameters, However,
at any glven instant this value may be reduced as the resiatance,

b, 18 algnificantly increased by the presence of gas bubbles in
the exlt and entry ports of the battery,

11
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FIG, | EXPERIMENTAL BATTERY MODEL
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FIG, 3 EXPERIMENTAL APPARATUS AND CRCUITRY
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PARASITIC CURRENT PATHWAYS

FIG ., 4 PARASITIC CURREMT PATHWAYS IN A MULTICELL SEA WATER BATTERY
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NOTE: SCALE 1:2

FIG. 8 CONFIGURATION OFf CHEMICAL FILTER
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FIG. 7 THE EFFECT OF THALLOUS FLUORIDE (TLF) ON THE CAPACITY OF
SEA WATER BATTERY WOX-74 WHEN DISCHARGED AT A CONSTANT
CURRENT OF 150 ma.
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' ELECTROLYTR MAJOR pH INITIAL
ELECTROLYTE COMPOS TP ION- IONS ’
SOLUTION 3.54 by weight: PRESENT L —T%H FINAL
8¢3O
A NaCl Na*,Cl”
11.00
8.25
B "‘MgCls Mg*+,C1-
9.05
8.25 i
C NagSOs Na*;804= ;
10,90
8.28 |
8e50 :
8,25
E 32/39 NaCl & 7/39 NagSOe | Na*,01=,80,=
11,00
Na+  Mg++ 8.25
F o |32/39 NaC1 & 7/39 MgSOs | o M8"
Cl17,50¢" 9.90
+ Mogtt 8.25
G |32/39 NaCl & 7/39 MgCly | N2 :M8
Cl-‘) 9.80
. Qulf Stream Nat,Mg++,cat+ | 8:30
Sea Water Cl=,S0.™ 9.65

TABLE 1, IDENTIFICATION OF
BELECTROLYTE SOLUTIONS

21
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ELECTROLYTE TIME MAXTHMUM CHARACTERISTICS
of SIMULATED PARASITIC OF INSOLUBLE
SOLUTION ELECTROLYSIS CURRENT (ms) PRECIPITATE
{hre)
A 2,70 55 White

Granular Type

White,
B 2.50 i Large Flocculent
: Agglomerates
C 3.05 50 White

Cranular Type

.§ White,

D 2.35 47 Large Flocoulent
' : Agglomerates
E 3,00 - ' 52 White

Granular Type

White ,
F 3.00 65 Large Flocculent
: Agglomerates

White,
G 3.00 5C Large Flosculent
} . Agglomerates

White,
H 3.00 65 Large Flocoulent
Agglomerates

TABLE 2. SUMMARY OF ELECTROLYTIC CORROSION DATA
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